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1 Introduction

1.1 Convergence rate in the law of large numbers: the iid case

Consider i.i.d. r.v. X; with EX; = 0. Let

Sn — X]_—I—...—I—Xn.

Law of Large numbers:

S
0.
n

Question: at what rate P(|Sy,| > ne) — 07?



The theorem of Hsu-Robbins-Erdos

Hsu and Robbins (1947):

EX? < 00 = ZP(|Sn| > ne) < oo Ve > 0.
("complete convergence”:rlwhich implies a.s. convergence)
Erdos (1949): the converse also holds:

EX? < 0o < ZP(|Sn| > ne) < oo Ve > 0.

n
Spitzer (1956):

Zn_lP(|Sn| > ne) < oo Ve > 0whenever EXq = 0.
n



Baum and Katz (1965): for p > 1,

E|Xq1|P < 00 & an_zP(|Sn| > ne) < oo Ve > 0;
n

In particular,
E|X1|P < 0o = P(|Sn| > ne) = o(n=(P71)

Question: is it valid for martingale differences?



1.2 Convergence rates in the law of large numbers: the martingale
case

Is the theorem of Baum and Katz (1965) still valid for martingale
differences (X;)?

{0,Q}y = Fg C F1 C ...,
Vj, X; are F; measurable with E[X ;|F;_1] =0
(& Sp = X1 + ... + Xy is a martingale. )



Lesigne and Volney (2001): p > 2
E|X1|P < co = P(|Sn| > ne) = o(n"P/?)

and the exponent p/2 is the best possible, even for stationary and
ergodic sequences of martingale differences.

Therefore the theorem of Baum and Katz does not hold for martin-
gale differences without additional conditions.



[ Curiously, Stoica (2007) claimed that the theorem of Baum and Katz
still holds for p > 2 in the case of martingale differences without ad-
ditional assumption. His claim is a contradiction with the conclusion
of Lesigne and Volney (2001), and his proof is wrong: he chose an
element in an empty set! ]



1.3 Under what conditions the theorem of Baum and Katz still holds
for martingale differences?

Alsmeyer (1990) proved that the theorem of Baum and Katz of order
p > 1 still holds for martingale differences (X ) if for some v €

(1,2]andg > (p—1)/(v — 1),

1 n
sup [|— Y E[|X;|7|Fj_1]llq < oo
n> N
J_
where ||.||q denotes the L9 norm.

His result is already nice, but:



(a) it does not apply to "non-homogeneous cases”, such as martin-
gales of the form

n
Sn = Z jana
j=1
where a > 0, X; are identically distributed:;
(b) in applications (e.g. in the study of directed polymers in a random
environment), instead of a single martingale, we need to consider
martingale arrays:

oo
S’I’L,OO — Z Xnaj’
j=1

where for each n, { X,, j : j > 1} are martingale differences with
respect to some filtration {F,, ; : j > 0}.



Our objective: extend the theorem of Baum and Katz (1965) to a
large class of martingale arrays, in improving Alsmeyer’s result for
martingales, by establishing a sharp comparison result between

oo oo
P(Y X,j>e)and Y P(X,;>c¢)
i=1 i=1

for arrays of martingale differences { X, ; : j > 1}.

Our result is sharper then the known ones even in the independent
(not necessarily identically distributed) case.



2. Main results for martingale arrays

Forn > 1, let {(Xy,5, Fnj) : 3 = 1} be a sequence of martingale
differences, and write

o0
mnp(y) = Z E[lxnjlﬂylj:n,j—l]a v € (1,2],
j=1
J
Sn,j — Z Xnis 3 21,
=1

oo
Sn,oo — Z an.
1=1



Lemma 1 (Law of large numbers) If for some ~ € (1, 2],

@)

Emn(v) := ) E[|Xp;["] — 0,
=1

then for all e > 0,

P{sup |S,, j| >} — 0
) >1

and
P{|Sn,oo| >e} — 0.

We are interested in their convergence rates.



Theorem 1 Let ® : N — [0,00). Suppose that for some v €
(1,2],q € [1,00) and g € (0, 1),

® @)
Emd(v) — 0and Y ®(n)(Emi(y))!70 <oco. (C1)
n=1
Then the following assertions are all equivalent:

> ®(n) ) P{|X,;| > e} < oo Ve > 0; (1)
n=1 71=1
Z ®(n)P{sup |S,;| > e} < co Ve > 0; (2)
n=1 321

Y ®(n)P{|Sn,00| > €} < 00 Ve > 0. (3)

n=1



Remark. The condition (C1) holds if for some » € Rand e; > 0,

®(n) = O(n") and [[mn(7)[lcoc = O(n™"1). (C1)

In the case where this holds with v = 2, Ghosal and Chandra (1998)
proved that (1) implies (2); our result is sharper because we have the
equivalence.



Theorem2 Let ® : N — [0, co) be such that ®(n) — oco. Suppose
that for some v € (1,2],q € [1,00) and g € (0,1),

®(n)(Em (7)) 70 = o(1) (resp.O(1)). (C2)
Then the following assertions are all equivalent:
b (n) Z P{|X};| > €} =0(1) (resp.O(1)) Ve > 0; (4)
j=1

<I>(n)P{31;p |Snjl > €} =o0(1) (resp.O(1)) Ve > 0; (5)
7>1

®(n)P{|Sn,c| > e} =0(1) (resp.O(1)) Ve >0. (6)



3. Consequences for martingales We now consider the single mar-
tingale case

S;=X1+...+X;
w.r.t. afiltration
{0,Q}y =Fog C F1 C ...
By definition, E[X j|F;_1] = 0.

For simplicity, let us only consider the case where

®(n) = nP~2%¢(n),
where p > 1, £ is a function slowly varying at oc:
. £(Ax)
lim

T— 00 E(:B)

=1 VA>0.



Notice that
S.
Sn/mn — 0 a.s. iff P(sup M > e) — 0Ve > 0.
gzn J
To consider its rate of convergence, we shall use the condition that
for some v € (1,2] and g € [1,00) withg > (p — 1) /(v — 1),

sup ||mn(v,n)|lq < oo, (C3)

n>1

where mp(v,n) = %Z;‘:l]EHXjWU-'j_l]. Remark that (C3)
holds evidently if for some constant C' > O and all 3 > 1,

E[| X;|7|Fj—1] £ C a.s. (C4)



Theorem 3 Let p > 1 and £ > 0 be slowly varying at co. Under
(C3) or (C4), the following assertions are equivalent:

O n
Z nP~20(n) Z P{|X;| > ne} <oo Ve>0; (7)
n=1 71=1

Z nP~ 2E(n)P{ sup |S | >ne} < oo Ve>0; (8)

> nP2(n)P{|Sn| > ne} < co Ve > 0. (9)

n=1

= p—2 |Sj|
Z nP~“U(n)P{sup —— > e} < oo Ve >0. (10)

n=1 ]Zn



Remark. If X; are identically distributed, then (7) is equivalent to
the moment condition

E|X1[Pe(| X1]) < oo.

So Theorem 3 is an extension of the result of Baum and Katz (1965).
When £ is a constant, it was proved by Alsmeyer (1991).



Theorem 4 Let p > 1 and £ > 0 be slowly varying at co. Under
(C3) or (C4), the following assertions are equivalent:

nP~10(n) Z P{|X;| > ne} = o(1) (resp. O(1)) Ve > 0;

j=1
(11)

nP~1e(n)P{ sup |Sj| > ne} =o(1) (resp. O(1)) Ve > 0;
1<j<n
(12)

nP~L(n)P{|Sn| > ne} = o(1) (resp. O(1)) Ve > 0.
(13)

np_lf(n)P{sgp ﬂ >e} =o0(1) (resp.O(1)) Ve > 0.
j=n

(14)



4. Applications to sums of weighted random variables.
Example: Cesaro summation for martingale differences.

Fora > —1,let A = 1 and
B (a+1)(a+2)---(a+mn)

a > 1.
An n! P e
Then A2 ~ —™ —asn — oo, and 4% > A%~L = 1. we
v I'(a+1) ’ A% £.5=0""n—3 — =
consider convergence rates of
n a—1 -
Ag ’
n

where {(X;, F;),j = 0} are martingale differences that are iden-
tically distributed.



For simplicity, suppose that for some v € (1,2],C > 0 and all
721,

E[|X;|7|F;-1] < C a.s. (15)



Theorem 5. Let {(X;,F;),5 > 0} be identically distributed mar-
tingale differences satisfying (15). Let p > 1, and assume that

v

\
Then

® @)

E

E

E

p—1 , 1
at+l < o0 fo<a<1l——,
p
1
Plog(e vV | X1]) < 0 ifa=1— —, (16)
p
1
P < 00 ifl — — < a<l.
p

Z nP~2P{| Z AT 1X | > Ale} < oo foralle > 0. (17)

n=1

7=0

Remark: in the independent case, the result is due to Gut (1993).



5. Proofs of main results

The proofs are based on some maximal inequalities for martingales.



A. Relation between

P X ; and P S -
(1r<_na<xn| il >¢€) (1r§nJaSXn| il > €)

for martingale differences (X;):



Lemma A Let {(X;,F;),1 < j < n} be a finite sequence of
martingale differences. Then forany e > 0,~v € (1,2],q > 1, and
L € N,

P X:| > 2} < P{ max |S;| > ¢
{ max 1X;| > 26} < P{ max |S;| > e}

< P{ X >}
= LS T )
—qy(L+1)

14
+Ce atl  (Em(v))atL, (18)

where C = C(~,q,L) > 0 is a constant depending only on ~, g
and L,

n

mn(y) = Y B[ XY Fj—1]-
j=1



B. Relation between

P X and P(X;
(1r<_nya§Xn i) Z (X5 >¢)
1<i<n

for adapted sequences (X;):

Lemma B Let {(X;, F;),1 < j < n} be an adapted sequence of
rv. Thenfore > 0,v > 0andqg > 1,

n
P X < P{X;
L2px, X > e} < 2, PUXG > )

< A4+ ")P{max X; > e} +e "Eml(y),
1<j<n

where ma(v) = X7y E[|X;[7|F;_1].



C. Relation between

P S d P(|S
(jmax |5j] > €)and P(|Sn| > )

for martingale differences (X;):

Lemma C Let {(X;, F|),00 < | < \} be a finite sequence of
martingale differences. Then fore > 0,~v € (1,2] and g > 1,

P S < 2P{|S
{max |Sj| > e} < 2P{|Sn| >

+e—quq<v+l>0q<w>ﬁm;&(v),
where mn () = >4 E[| X;[7|Fj—1],
C(y) = (18v%/2/(v - 1)1/2) .



Thank you!
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